BrainFlow to MNE Python Notebook¶
In [1]:
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import brainflow
from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds
import mne
from mne.channels import read_layout
In [2]:
# use synthetic board for demo
params = BrainFlowInputParams()
board = BoardShim(BoardIds.SYNTHETIC_BOARD.value, params)
board.prepare_session()
board.start_stream()
time.sleep(10)
data = board.get_board_data()
board.stop_stream()
board.release_session()
[2025-01-15 23:33:58.261] [board_logger] [info] incoming json: {
"file": "",
"file_anc": "",
"file_aux": "",
"ip_address": "",
"ip_address_anc": "",
"ip_address_aux": "",
"ip_port": 0,
"ip_port_anc": 0,
"ip_port_aux": 0,
"ip_protocol": 0,
"mac_address": "",
"master_board": -100,
"other_info": "",
"serial_number": "",
"serial_port": "",
"timeout": 0
}
In [3]:
eeg_channels = BoardShim.get_eeg_channels(BoardIds.SYNTHETIC_BOARD.value)
eeg_data = data[eeg_channels, :]
eeg_data = eeg_data / 1000000 # BrainFlow returns uV, convert to V for MNE
In [4]:
# Creating MNE objects from brainflow data arrays
ch_types = ['eeg'] * len(eeg_channels)
ch_names = BoardShim.get_eeg_names(BoardIds.SYNTHETIC_BOARD.value)
sfreq = BoardShim.get_sampling_rate(BoardIds.SYNTHETIC_BOARD.value)
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = mne.io.RawArray(eeg_data, info)
# its time to plot something!
raw.plot_psd(average=False)
Creating RawArray with float64 data, n_channels=16, n_times=2502
Range : 0 ... 2501 = 0.000 ... 10.004 secs
Ready.
NOTE: plot_psd() is a legacy function. New code should use .compute_psd().plot().
Effective window size : 8.192 (s)
/tmp/ipykernel_840/1429959458.py:8: RuntimeWarning: Channel locations not available. Disabling spatial colors.
raw.plot_psd(average=False)
Out[4]: